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SUMMARY

In the paper two generalized linear models, i.e. the log-linear with Poisson distribution
and logistic model with multinomial distribution, are applied to the analysis of a real
experiment concerning the grain contamination by grain weevils. The comparison of
these two approaches as well as their theoretical backgrounds are also presented.

KEY WORDS: estimation, maximum likelihood method, least squares method, weigh-
ted least squares method.

1. Introduction

It is known that there are often many alternative approaches to the analysis of a
particular set of experimental data. Moreover, even in the same general frames the
different methods can be used to establish final conclusions.

In the paper the analyses of a real experiment using two generalized linear models,
the log-linear model with Poisson distribution and the logistic model with multinomial
distribution, are presented. The unknown parameters in these models were estimated
using the least squares method, the weighted least squares method and the Fisher
scoring method. The analyzed experiment concerns the grain contamination by grain
weevils.

2. Generalized linear model
Let y be a random variable observed in the experiment and let x be a vector of
covariates. The vector x can be reduced to one covariate only. The generalized

*Partially supported by the State Committee for Scientific Research,
grant no. 3 PO6A 021 24



38 E. Bakinowska

linear model (see McCullagh and Nelder, 1983, 1989) is determined by two following
assumptions:

a) a chosen function 7, called a link function, of the expectation of y, E(y) = y,
depends linearly on the vector of covariates, n(u) = xT3, where B is a vector of
unknown regression parameters,

b) the variance of the random variable Y, Var(y), depends on the expected value o,
Var(y) = ¢V (u), where V(p) is a variance function and ¢ is a scale parameter.

If arandom variable observed is the k-dimensional random vector, y = (y1, ..., yx)7,

then the expected value E(y) is the vector

H= ()u'la "'7/-Lk)T’

and Var(y) is the variance-covariance matrix. In this case the link function is a
map transforming the vector u into a vector n. The components of the vector n =
(m1(12), My (pa), ..., n,(1))T are connected with the covariates by the set of equations

nw(l“'):xgﬁwv w=1!2""’t7

which can be expressed in the matrix form as

(k) = X8, (2.1)

where X = diag(xZ) and 8 = (47, ..., BY)T. Usually it is assumed that the transfor-
mation 1) = () is one-to-one and differentiable.

It in the experiment with the scalar variable y the group of s independent ob-
Jects, characterized by various values X1,X2,...,X, Of covariates, is observed, then a
dependence of y on x,

p=p(x) =n"1(xTB),
is of interest. To achieve this, an estimate of the parameter vector B is necessary. It
can be obtained from the model

() x{
. = - |8, (2.2)
(k) xT

where y; = p(x;) for i = 1,2, ..., s.
In case of the vector random variable Yy, the interest concerns the set of functions
#1(X), 3(%), ..., i (x). They can be obtained after estimating the parameter vector



Analyzing experiments by GLM 39

(B from the model
n(p1) Xy
e = ... |8, (2.3)
(k) X

where p; = pu(x;) = (pq(Xs), -y e (x:))T and each matrix X; has the same form as
X in (2.1), but with elements of X; determined by the point x;.

3. Estimation methods of regression parameters

Estimation of regression parameters can be carried out by various methods (see Mc-
Culloch and Searle, 2001). We will present some of them for the model with the
vector random variable.

If y is the random variable on which we can state that it has asymptotically normal
distribution,

y ~ N(p, ¢V),

then the random variable n(y) (see Mardia et al. 1979, p. 52; Rao, 1982, p. 398 or
Agresti, 1984, p. 247) has also the asymptotically normal distribution,

n(y) ~ N(n(w),¢GVGT),

where G is a matrix of partial derivatives, G = 0n/9yT, evaluated at y = p. In
general the elements of G are the functions of u, G = G (), as well as the element
of the variance function V = V (u). The vector n(y) is asymptotically an unbiased
estimator of 17(p). In the frame of the model (2.1), it can be used to estimate 3 by
applying the least squares method or the weighted least squares method with weights
following from the matrix $GVGT,

When s independent objects are observed, then the appropriate normal equations
can be written in the form

8 S

Z XTW. X8 = Z X7 Wain(y:), (3.1)

i=1 i=1
where matrices Xy, ..., X, follow from (2.3), y; is the response of the observed va-
riable for the i-th object, and W; is a matrix of corresponding weights. If W; =1
for i = 1,2, ..., s, the equation (3.1) leads to the simple least squares estimator (LS
— Least Squares method). Other set of weights is determined by the matrices of the
form (¢G(yi)V(yi)GT(yi))—1, Actually, they are inverses of asymptotic covariance
matrices estimated by replacing the unknown expected values p; by the vectors y;, re-
spectively. They lead to the weighted least squares estimator (WLS — Weighted Least
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Squares method). Assuming that matrices X; are of full column rank, the asymptotic
covariance matrices of the LS-estimator and of the WLS-estimator, respectively, have
the following forms:

s -1, s .
Vis= (Z XiTXi) (Z X7 (6G (1) V()G (1sy)) Xi) (Z X?Xi>

i=1 i=1
(3.2)
and
Vwers = (Z XzT (¢G(#1)V(I~‘i)GT(Mi))—1 Xz‘) . (3:3)

Their estimates can be obtained by substituting u; by y;.

If the joint distribution of observed variables is known, we can estimate the vector
B using the likelihood method provided that the transformation pu — 7 is invertible.
The last assumption allows to determine a gradient s; of the logarithm of the likelihood
function I; = I(p;,y;) with respect to 8,

ol (on\"' an
% (0)= 5.1 (8u-T> 0BT’

for all observed objects i = 1,2, .-+, 8. Comparing their sum to the zero vector, provides
the maximum likelihood equation which takes the form

8

D siB)=o.

i=1
It is a non-linear equation. Its solution can be searched through the Newton-Raphson
method. This method simplifies, if the matrix of second derivatives of the likelihood
function is replaced by its expectation, which leads to the Fisher information matrix.
In result, the subsequent approximations of the solution are related by the equation

ﬂn+1 = ﬁ'n, + F—lsa

where s = 77 s;(8,) and F = > i=1 Fi, with F; being the information matrix
corresponding to the i-th observed object. This approach is known as the Fisher
scoring method (FS). The estimate of the covariance matrix of the FS estimator has
the form as in (3.3), however with p; replaced by XiBrg.
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4. A biological experiment

It is known that storage of the damp grain leads to its contamination. One of the
causes are grain weevils which leave the corks on the grains. Their activity depends
on the natural gas, which is produced by the damp grain. To establish the influence
of the gas concentration on the degree of contamination, the following experiment
was conducted.

Into nine pots, each containing 100 grains of wheat, ten weevils (5 male and 5
female) were inserted. The pots were filled with gas (1-okten-3-ol). It was supposed
that the degree of grain contamination depends on gas concentration. Therefore three
concentrations of gas were used: 10 ppm, 50 ppm and 100 ppm, each applied to three
pots. The degree of contamination was determined by the number of corks on each
grain in each pot.

We can assume that we have s = 9 objects (pots), each including m; = 100 units
(grains), and nine values of the covariate variable (gas concentration) 1 = zy = z3 =
10, z4 = 25 = g = 50, x7 = g = x9 = 100. The results of that experiment are
presented in Table 1.

Table 1. The observed grain contamination

Gas Numbers of corks
concentrations 0 1 2 3 4 >
1 =10 34 29 17 14 5

z2 =10 35 23 18 15 4
z3 =10 25 34 17 9 6
x4 = 50 19 25 17 11 14 1
z5 = 50 20 26 18 9 11 1
z6 = 50 27 21 24 18 4
z7 = 100 32 35 12 10 6
zg = 100 34 21 15 14 9
zo = 100 40 29 17 8 3

WU O © U=t

The problem posed in this experiment can be approached by answering two que-
stions, namely, how the average grain contamination depends on the gas concentration
and how the probability that the single grain will be contaminated by a given number
of corks depends on the gas concentration. Both these questions can be answered
using the generalized linear model.

5. Modelling with the use of the Poisson distribution

If the interests of the experimenter are focussed on the avérage contamination, the
data can be analyzed using the generalized linear model with the Poisson distribution.
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To this aim let us assume that y;, being the number of corks on the I-th grain in
the i-th pot, has the Poisson distribution, y;; ~ P()\;), where A; > 0 is the average
number of corks on grains in the i-th pot. Moreover, let ¥: denote the average,

1 m; 1 100
yi=—fzyiz=—zyil~
m; 100 =

In consequence we have

1 1
E(y) =pm =X, Var(y)=¢,V(\)= == 100

where the scale parameter and the variance function have the forms

i, (5.1)

1
¢i = T—n—'7 and V()\z) = /\i,

T
respectively.
Since A; > 0, the appropriate link function is the logarithmic transformation,

n(A:) = log(\;).

Moreover, since each three pots were treated by different concentrations of the gas,
the numbers A;, ¢ = 1,2,...,9, can be considered as the values of a function Alz)
at points z;, i = 1,2,...,9, i.e. A(z;) = A\;. Finally, since only three different gas
concentrations were used, the values of the link function n(\(z)) can be predicted by
the quadratic regression,

log(A(z)) = By + Byz + By2?, (5.2)

which leads to the so-called log-linear model (see Agresti, 1984). In consequence, the
problem of establishing the average contamination function A(z) consists in estimation
of regression parameters 3, 3, Ba.

The estimation was carried out by three methods described in Section 3. The
estimates of parameters f,, 3, 3, are presented in Table 2. As a starting point for
the Fisher scoring method the estimates following from the LS method were used.

Table 2. Estimates of parameters in log-linear modetl

Parameters Method
LS WLS FS*
Bo 0.208241 0.213454 0.210603
By 0.020433 0.020987 0.020732
Bs —0.000189 —0.000194 —0.000191

*results of the fifth iteration
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The asymptotic covariance matrix for the LS estimates was obtained from the
formula (3.2). It has the form:

X 478413.066 —17773.969 132.499
Vis=1| —17773.969 912.194 -—7.656 | -1078.
132.499 —~7.656  0.069

The estimates of asymptotic covariance matrices of the WLS and the FS estimator
are the same up to fifteen decimal places and have following form

) A 473030.889 —17538.133 130.638
Vwrs =Vps = —17538.133 896.897 ~-7.522 | -1078.
130.638 —7.522 0.067

The comparison of results following from different methods points a close accor-
dance of the point estimates of regression parameters as well as the estimates of their
covariance matrices. Nevertheless, the FS and the WLS methods produce the estima-
tes which are more efficient then those following from the LS method. The estimates
of regression parameters can be used to obtain the estimate of the average contami-
nation function A(z). With the FS estimates, it takes the form (see also Figure 1),

A(z) = exp(0.210603 + 0.020732z — 0.000191z2). (5.3)
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Fig. 1. The average grain contamination
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6. Modelling with the use of the multinomial distribution

If the experimenter is interested in estimating the probability that a single grain will
be contaminated by a given number of corks, the description of the experiment can
be based on the multinomial distribution. To this aim let us assume that each grain
was classified to k = 6 separate categories corresponding to columns of Table 1. The
results of classification for the i-th pot form a random vector y; which follows the
multinomial distribution, y; ~ M(m;,m;), where m; = (713,724, .o, i) T, With Tji
being a probability that a grain will be classified to the j-th category, Z§=1 T = L.
In consequence, using well known results (compare Fisz, 1958, or Mardia et al., 1979)
for the vector of frequencies p;,

b

Lt 1
p; = miyz = looyu
we have
1
E(p;) =7, Var(p;) = ¢;V(m;) = E(ﬂ’g -] ),
1
)

where 77 is the diagonal matrix with elements of the vector r; on its diagonal,
¢; = 1/m; = 1/100 is the scale parameter, while V(m;) = (7¢ —m;#wT) is the variance
function.

In experiment under consideration the categories are naturally ordered. In such
case, it is more interesting to estimate cumulative probabilities Vji = Wit Toite o+
that a grain will be contaminated 5 times at most.

Since E?zlﬂ‘ji = 1 and 0 < m; < 1 the appropriate link functions (see e.g.
McCulloch and Searle, 2001) are the logit functions

nj(m)=logll, j=1,2,.,5, i=1,2,..9. (6.1)

Yji
Moreover, since each three pots were treated by different concentration of the gas,
the cumulative probabilities Yji» ¢ = 1,2,..,9, can be considered as the values of a
functions v, (z) at points z; i =1,2,...,9, i.e. v;{:) = 7;;- Finally, since only three
different gas concentrations were used, the values of the link function n;(m(z)) can
be predicted by the quadratic regression,

A\X;
Iog 7]( l) ) = ,80] +ﬂ1]$Z +ﬁ2]$z2i J = 1,2, cery 5, 1= 1,2, ...9. (62)

1—7; (z;
This transformation leads to the so-called logistic model, which forms the base for
estimation of regression parameters Boj» Bijs B2jy 5 = 1,2,...,5. Their estimates
obtained by three methods presented in Section 3, are contained in Table 3. As a
starting point for the F'S method the estimates following from the LS method were
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used. Some detailed remarks concerning the estimation methods in generalized linear
models with multinomial distribution are presented in the paper by Bakinowska and
Kala (2002).

Table 3. Estimates of parameters in logistic model

Parameters Method
LS WLS FS*
Bor -0.531303 -0.501710 -0.524021
B -0.029065 -0.028644 -0.028862
Ba1 0.000283  0.000278  0.000281
Boa 0.707885  0.686987  0.705642
Bia -0.033354 -0.031905 -0.033192
Bag 0.000320  0.000304  0.000317
Bos 1.528928  1.514830 1.523048
Bis -0.032931 -0.031970 -0.032604
Bos 0.000309  0.000291  0.000302
Boa 2.699417  2.509839  2.641406
Bia -0.047500 -0.048641 -0.048742
Bos 0.000422 0.000438  0.000432
Bos 3.857756  3.141352  3.420443
Bis -0.062756 -0.048222 -0.052360
Bas 0.000542  0.000456  0.000476

*results of the sixth iteration

Since the number of estimated parameters is large, below we present estimates
of the covariance matrices only for the subvectors 8; = (8o, B11,821)7 and By =

(:602,:312’ﬁ22)T:

X 3553563.133 —147841.690 1139.380
Vis(B,) = | —147841.690 8987.398 —77.048 | -1078,
1139.380 —~77.048 0.689

3492442.879 —145175.358 1118.709

Vwis(B,) = | —145175.358 8815,689 —75.583 | -107%,
1118.709 ~75.583  0.676

) 3492190.658 —145236.714 1119.358

Vrs(B,) = | —145236.714 8825.120 -—75.673 | -107%,
1119.358 —75.673  0.677

) 3492190.658 —145236.714 1119.358
Vis(B,) = | —145236.714 8825.120 —75.673 | -107%,
1119.358 —75.673 0.677
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) 3029089.740 —119287.432 906.031
Vwis(8y) = | —119287.432 6720.310 -57.202 | -10-8,
906.031 —-57.202  0.514

) 3032454.239 —119413.161 906.897
Vres(By) = | —110413.161 6726.755 —57.248 | - 1078,
906.897 ~57.248  0.514

It is easy to note that the matrices Vyy Ls and Vg slightly differ from each other.
These differences are justified by different values of the estimates used in the place of
; in formula (2.3).

Some of the searched probability functions, obtained with the use of the FS esti-
mates, have the following forms:

) . exp(—0.524021 — 0.028862z + 0.0002812>2
31(@) = 1 () = —R )

h 6.
1+ exp(—0.524021 — 0.028862 + 0.0002812)’ (6.3)

o (2) = 71 (z) + o (z) = —R(0.705642 — 0.033192z + 0.0003172?)
s 7 T+ exp(0.705642 — 0.033192z + 0.00031727)”

N . . . exp(1.523048 — 0.032604z + 0.000302z2)

¥a(@) = 1 (2)+#2(@) +7r5(2) = ¢ + exp(1.523048 — 0.032604z + 0.00030227)" (0°0)
where 7, () represents the probability that the grain will not be contaminated, 5 (z)
— the probability, that the grain will be contaminated once at most, and 7y5(z) — the
probability, that the grain will be contaminated two times at most. These functions
are presented in Figure 2.

(6.4)

7. Comparison of the results

The analyses conducted in the previous section were based on two different models.
Hence the obtained estimates of regression parameters can not be directly compared.
However, using the estimated average contamination function A(z), obtained with the
use of the log-linear model, the probability functions v,,(z), n = 1, 2,3, discussed in
Section 6, can be constructed. They are related by the following equations:

1) = exp(-A@),
1E@) = eP(-A@)(1+A@)),
@) = exp(-A@)(1+A@) + 13(z).
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Fig. 2. The grain contamination probabilities. The continous line — the probability that a
grain will not be contaminated, the broken line - that the grain will be contaminated once
at most, the dotted line — that the grain will be contaminated two times at most.

Their graphs are presented on Figure 3. It is easy to observe, that the graphs are simi-
lar. The functions reach their minimum at the same point, for the gas concentration
50 ppm. However, the estimates of probabilities may differ even by 0.1.

On the other hand, in the model with Poisson distribution the emphasis is put on
estimation of the average grain contamination, while in the model with multinomial
distribution the emphasis is put on estimation of the probability of the grain conta-
mination. Although the results of both analyses are similar, the log-linear model with
Poisson distribution contains less parameters which results in more compact form of
the model and simplifies the analysis.
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Fig. 3. The grain contamination probabilities. The fat line corresponds to the function
following from the model with the Poisson distribution, while the thin line to the model
with the multinomial distribution. The dotted line — the probability that a grain will not
be contaminated, the broken line — that the grain will be contaminated once at most, the
continous line - that the grain will be contaminated two times at most.
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Zastosowanie uogélnionych modeli liniowych do analizy eksperymentéw

STRESZCZENIE

W pracy zastosowano dwa uogélnione modele liniowe, tj. model log-liniowy z roz-
kladem Poissona i model logistyczny z rozkladem wielomianowym, do analizy rzeczy-
wistego eksperymentu dotyczacego porazenia ziarna przez wolki zbozowe. Przedsta-
wiono teori¢ okre$lajaca omawiane modele, a takze dokonano ich poréwnania.

SLOWA KLUCZOWE: estymacja, metoda najwigkszej wiarogodnosci, metoda najmniej-
szych kwadratéw, wazona metoda najmniejszych kwadratéw.



